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ABSTRACT Particular types of hormonal contraceptives (HCs) and genital tract infections have been independently associated
with risk of HIV-1 acquisition. We examined whether immunity in women using injectable depot medroxyprogesterone acetate
(DMPA), combined oral contraceptives (COC), or no HCs differs by the presence of cervicovaginal infections. Immune media-
tors were quantified in cervical swabs from 832 HIV-uninfected reproductive-age Ugandans and Zimbabweans. Bacterial infec-
tions and HIV were diagnosed by PCR, genital herpes serostatus by enzyme-linked immunosorbent assay (ELISA), altered mi-
croflora by Nugent score, and Trichomonas vaginalis and Candida albicans infection by wet mount. Generalized linear models
utilizing Box-Cox-Power transformation examined associations between levels of mediators, infection status, and HCs. In
no-HC users, T. vaginalis was associated with broadest spectrum of aberrant immunity (higher interleukin 1� [IL-1�], IL-8,
macrophage inflammatory protein 3� [MIP-3�], �-defensin 2 [BD2], and IL-1 receptor antigen [IL-1RA]). In women with a nor-
mal Nugent score and no genital infection, compared to the no-HC group, COC users showed higher levels of IL-1�, IL-6, IL-8,
and IL-1RA, while DMPA users showed higher levels of RANTES and lower levels of BD2, both associated with HIV seroconver-
sion. These effects of COC were blunted in the presence of gonorrhea, chlamydia, trichomoniasis, candidiasis, and an abnormal
Nugent score; however, RANTES was increased among COC users with herpes, chlamydia, and abnormal Nugent scores. The
effect of DMPA was exacerbated by lower levels of IL-1RA in gonorrhea, chlamydia, or herpes, SLPI in gonorrhea, and IL-1�,
MIP-3�, and IL-1RA/IL1� ratio in trichomoniasis. Thus, the effects of HC on cervical immunity depend on the genital tract mi-
croenvironment, and a weakened mucosal barrier against HIV may be a combined resultant of genital tract infections and
HC use.

IMPORTANCE In this article, we show that in young reproductive-age women most vulnerable to HIV, hormonal contraceptives
are associated with altered cervical immunity in a manner dependent on the presence of genital tract infections. Through altered
immunity, hormones may predispose women to bacterial and viral pathogens; conversely, a preexisting specific infection or dis-
turbed vaginal microbiota may suppress the immune activation by levonorgestrel or exacerbate the suppressed immunity by
DMPA, thus increasing HIV risk by their cumulative action. Clinical studies assessing the effects of contraception on HIV sus-
ceptibility and mucosal immunity may generate disparate results in populations that differ by microbiota background or preva-
lence of undiagnosed genital tract infections. A high prevalence of asymptomatic infections among HC users that remain undi-
agnosed and untreated raises even more concerns in light of their combined effects on biomarkers of HIV risk. The molecular
mechanisms of the vaginal microbiome’s simultaneous interactions with hormones and HIV remain to be elucidated.
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Most commonly used hormonal contraceptives (HCs), in-
cluding the progestin injectable depot medroxyprogester-

one acetate (DMPA [also known as Depo-Provera]), injected
every 3 months, and combined estrogen-progestin oral contra-
ceptives (COC), as well as pregnancy have been variably associated
with increased risk of human immunodeficiency virus (HIV) and
other sexually transmitted infections (1–7). In addition, a large
epidemiological study, supplemented with molecular analysis of
transmitting HIV, suggested that women using certain types of

HCs may confer a higher risk of HIV transmission to their male
partner (5). A recent study showed that the progestin levonorg-
estrel may decrease the clearance of high-risk human papilloma-
virus (HPV) infection and possibly increase acquisition (8), thus
suggesting a potential impact of HCs on cervical immunity going
beyond the risk of HIV. While experts continue to debate the
validity of the epidemiological associations, to which populations
they may apply, and how to balance the risk of HCs versus risks of
pregnancy, over 150 million women continue using hormonal
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contraceptives. In the African epicenter of the epidemic, the
United Nations (UN) estimates that 29% of all women using a
modern contraceptive method use DMPA (9), and the rates are
especially high in eastern and South Africa, where the epidemic is
most severe.

To date, it remains unclear whether there are biological
grounds for the disparate epidemiological data on the effect of
hormonal contraceptives on HIV acquisition. A reasonable bio-
logical explanation would be that microbial factors not taken into
consideration by published epidemiological studies invert, sup-
press, or amplify hormonal influences on the cervicovaginal mu-
cosal immune barrier.

To address this question, we focused our attention on genital
inflammation because of its known role as a risk factor of HIV
acquisition (10) and on the uterine cervix as a major contributor
to the cervicovaginal secretory mucosal barrier (11–13). Many
cytokines and other innate immunity mediators secreted by
the cervix have been implicated in HIV immunopathogenesis
through host cell activation or direct effects on the viral replica-
tion cycle (8, 14). Although it has been shown that female genital
tract inflammation and immunity are hormonally regulated and
linked to menstrual cycle phase (15–20) and to cervical ectopy,
which is also hormonally regulated (15), limited clinical data exist
on the effect of hormonal contraception on cervical immunity
(21, 22). A small study (15 DMPA users, 18 levonorgestrel intra-
uterine device users, and 23 controls) limited to women with no
sexually transmitted infections (STIs) showed significant gene up-
regulation of pathways of inflammation and immunity in the cer-
vical transformation zone associated with progestin use (23).
Analysis of cervicovaginal lavage specimens and paired serum
samples from 18 DMPA users, 14 COC users, and 21 control
women measured only interferon alpha (IFN-�) and showed
reduced local and systemic levels with DMPA use (24). Another
relatively small study of HIV-uninfected women, in which most
women (�64%) belonged to the special category of HIV-
discordant couples, only 16 women used oral contraceptives, and
41 used DMPA versus 171 in the no-HC group, and where STIs
showed imbalanced distribution, mostly recorded in women who
did not use HCs, found increased cervical levels of some but not
other antibacterial cationic peptides in DMPA users (25). Earlier
we utilized a much bigger study of 832 women from the Hormonal
Contraception and Risk of HIV (HC-HIV) cohort to test the as-
sociation between HCs, cervical immunity, and risk of HIV acqui-
sition. We found that elevated cervical levels of the chemokine
RANTES (regulated upon activation, normal T-cell expressed,
and secreted) was associated with higher risk of HIV seroconver-
sion within the next 3 months and that cervical levels of RANTES
were also higher in the DMPA users (n � 307) compared to those
who did not use HCs (n � 226) or those who used COC (n � 299).
In addition, DMPA users had lower levels of �-defensin 2 (BD2),
and COC users had higher levels of most inflammatory proteins
measured (26). However, in our published analyses of the HC-
HIV cohort, we did not assess immunity in association with con-
current bacterial, fungal, or viral cervicovaginal infections (CVIs)
and altered microflora.

Reproductive tract infections and microbiome disturbances,
and especially the syndrome clinically diagnosed as bacterial vagi-
nosis (BV), are recognized as proinflammatory risk factors for
HIV acquisition and transmission (27–29). However, studies that
have attempted to establish cytokine signatures of STIs and vagi-

nal microbiota have not specifically elucidated how microbial
factors contribute to the altered cervical barrier in women using
hormonal contraceptives (30, 31). We hypothesized that cervico-
vaginal pathogens (e.g., Trichomonas vaginalis, Neisseria gonor-
rhoeae, Chlamydia trachomatis, genital herpesvirus 2 [HSV-2],
and Candida albicans) and disturbances in the normal vaginal
microbiota that are often undiagnosed, not treated, and especially
common and hazardous in women at risk of HIV (32–35) may
alter or contribute to the effects of hormonal contraceptives on
cervical immunity. To test this hypothesis we performed second-
ary analysis of the HC-HIV cohort, which provided both immu-
nologic and microbiologic data. We assessed the combined effects
of cervicovaginal infections (CVIs) and hormonal contraceptives
on levels of immune mediators chosen based on their proven bi-
ological significance (36–39) and abundant production by the cer-
vicovaginal epithelium (11, 40–44), as well as based on their reli-
able measurement in human cervicovaginal secretions (36, 37,
45–47). The following 10 proteins were selected to represent five
major classes of immunoinflammatory mediators: (i) the cyto-
kines interleukin-1� (IL-1�) and IL-6, (ii) chemokines XCL8 (IL-
8), CCL20 (macrophage inflammatory protein 3� [MIP-3�]),
and CCL5 (RANTES), (iii) vasoactive mediators and adhesion
molecules acting downstream from cytokine and chemokine acti-
vation, including vascular endothelial growth factor (VEGF) and
soluble intercellular adhesion molecule 1 (sICAM-1 [CD54]), (iv)
the anti-inflammatory cytokine antagonist IL-1 receptor antago-
nist (IL-1RA), and (v) the antibacterial and antiviral proteins se-
cretory leukocyte protease inhibitor (SLPI) and BD2.

RESULTS
Prevalence and distribution of lab-confirmed CVIs. In this
study, controls (633 women who remained HIV negative) were
matched to cases (199 women who later HIV seroconverted) by a
composite STI variable (bacterial vaginosis [BV] and chlamydia-
and/or gonorrhea-positive status). As expected from this matched
design driven by the high rate of STIs associated with HIV, the
overall prevalence of lab-confirmed CVIs was high (86%) in our
nested cohort (Table 1). The distribution of CVIs differed by HC
use. The COC and DMPA users had lower rates of lab-confirmed
CVIs (84.3% and 84.4%, respectively) compared to the no-HC
group (91%) (P � 0.046). The same differences by HC use were
observed among the nonpregnant women alone (P � 0.043), sug-
gesting that the imbalanced distribution was not driven by the
higher rates of pregnancy, which expectedly occurred among the
no-HC users and is considered a risk factor for CVIs. The differ-
ences could not be explained by the prevalence of unprotected sex
acts, since the prevalence of unprotected sex and the number of
unprotected sexual acts were highest in COC users, followed by
DMPA users and no-HC users (P � 0.001) (Fig. 1A). On the other
hand, the higher rate of CVIs among the no-HC group appeared
driven by HSV (which was not used in the matching composite
variable in our cohort): 69% (133/473) of no-HC users were
HSV� compared with 58% (168/473) and 57% (172/473) in the
COC and DMPA groups, respectively (P � 0.01).

The laboratory analysis showed a high degree of overlapping
CVIs. Importantly more than half of our study cohort (473/832
[57%]) was herpes positive by serology, and over one-third was
positive for BV (265/832 [32%]) and these two CVIs had an im-
balanced distribution among the other CVIs, as shown in Table 2
(for the nonpregnant women only). The herpes-positive cases
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were evenly distributed among women with chlamydia, candidi-
asis, or BV but significantly (P � 0.05) more common among
women positive for T. vaginalis infection or gonorrhea (74% ver-
sus 59% among the T. vaginalis infection- or gonorrhea-positive
versus negative). The BV-positive status (Nugent score of 7 to 10)
was evenly distributed, except among women positive for candi-
diasis, where BV was significantly (P � 0.05) less common (14%
among candidiasis-positive versus 39% among candidiasis-
negative women), which was expected based on previously re-
ported inverse relationship between BV and candidiasis in the
overall HC-HIV study (48).

Distribution of clinical signs and symptoms. The prevalence
of clinical signs and symptoms of CVIs were also differentially
distributed among the various contraceptive methods (P � 0.012)
(Fig. 1B). This analysis excluded 50 women who answered some
questions about symptoms with “don’t know” or for whom no
assessment was done due to menses. The greatest proportion of
women had asymptomatic clinically manifested signs of infections
(61%), which were most prevalent among the COC users (65%),
followed by the DMPA (60%) and no-HC users (58%). In con-
trast, symptomatic presence of signs of CVIs was more common
in the no-HC group than in the COC and DMPA groups (24%
versus 16% and 14%, respectively; P � 0.009).

To investigate the potential impact of the uneven distribution
of symptoms on our immunologic analyses, we compared levels of
immune mediators between women with lab-confirmed CVIs
who did or did not report symptoms. No significant differences
were found except for BD2 (higher in symptomatic women [P �
0.01]) and SLPI (lower in symptomatic women [P � 0.05]) (see
Table S1 in the supplemental material).

Cervical immunity by CVI status and HC use. To control for
the uneven distribution for overlapping infections, signs, and
symptoms, we assessed the differences in cervical immune medi-
ators by CVI status and HC use using a multivariable analysis
adjusting for overlapping individual CVIs and for clinical signs
and symptoms of CVI via generalized linear models.

The concentrations of each biomarker in no-HC users strati-
fied by CVI are shown in Table S2 in the supplemental material.
To illustrate the combined effect of CVIs and HCs, we used the
average of the CVI-free no-HC group as a baseline and calculated
differences between this baseline and each combination of CVI
with no-HC, DMPA, or COC (Fig. 2).

First assessed were differences between no HCs and the two
types of HCs within each CVI group (see Table S3 in the supple-
mental material). In the CVI-free group (normal Nugent score of
�4 and lab-confirmed negative results for chlamydia, gonorrhea,
herpes, or T. vaginalis and Candida infection), COC users com-
pared to no-HC users showed higher levels of IL-1� (P � 0.001),
IL-6 (P � 0.01), and IL-8 and IL-1RA (P � 0.05). In the CVI-free
group, compared to the no-HC group, DMPA users showed
higher RANTES and lower BD2 levels (P � 0.05).

The effects of COC were different within the CVI-positive
groups. The above immunostimulatory effects of COC use ob-
served compared to those of no HC use among the CVI-free
women were blunted or even reversed in the presence of most
CVIs, with a few exceptions. Compared to the no-HC group,
IL-1� was significantly increased by COC use only within the BV�

TABLE 1 Distribution of CVIs stratified by hormonal contraception use, pregnancy, and breastfeeding

Group

No. (%) of CVIs in treatment groupa

nb

P
value

COC DMPA No-HC Total

CVI� CVI� CVI� CVI� CVI� CVI� CVI� CVI�

Nonpregnant and nonbreastfeeding 229 (84.50) 42 (15.50) 187 (84.23) 35 (15.77) 144 (92.31) 12 (7.69) 560 (86.29) 89 (13.71) 649 0.043
Nonpregnant and breastfeeding 11 (78.57) 3 (21.43) 67 (85.90) 11 (14.10) 35 (92.11) 3 (7.89) 113 (78.29) 17 (13.08) 130 0.400
Pregnant 7 (87.50) 1 (12.50) 1 (50.00) 1 (50.00) 25 (83.33) 5 (16.67) 33 (82.50) 7 (17.50) 40 0.446
Total n 247 (84.30) 46 (15.70) 255 (84.44) 47 (15.56) 204 (91.07) 20 (8.93) 706 (86.20) 113 (13.80) 819 0.046
a The CVIs include T. vaginalis, N. gonorrhoeae, C. trachomatis, C. albicans, HSV-2, and abnormal microflora by Nugent score. COC, combined estrogen-progestin oral
contraceptive (levonorgestrel); DMPA, injectable progestin (Depo-Provera); no-HC, no hormonal contraceptives.
b Thirteen women were excluded from the analysis due to insufficient lab test data to classify their CVI status.

FIG 1 Distribution of number of sexual acts (A) and clinical signs and symp-
toms of cervicovaginal infections (B) among women who chose not to use
hormonal contraception (no-HC) and women with majority use of combined
oral contraceptives (COC) or DMPA. P values indicate differences among the
HC groups.
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group (P � 0.001), IL-6 and IL-8 were increased only within the
BV� (P � 0.001) and HSV-2 � groups (P � 0.001 and P � 0.01,
respectively), and in addition, in these two groups, COC use
showed higher levels of MIP-3� (P � 0.001), VEGF (P � 0.04 for
herpes and P � 0.001 for BV), and SLPI (P � 0.001). MIP-3� and
SLPI were also increased (P � 0.001) by COC use within the
candidiasis-positive group, and BD2 was decreased in the
candidiasis-positive (0 � 0.04) and HSV-2� (P � 0.001) groups.
Levels of IL-1� (P � 0.01) and IL-8 (P � 0.04) were even de-
creased in COC users with T. vaginalis infection. COC use failed
to increase IL-1RA compared to no-HC use in any of the CVI�

groups, and in addition, the anti-inflammatory ratio of IL-1RA to
IL-1� was decreased by COC use in women with T. vaginalis in-
fection, BV (P � 0.001), gonorrhea (P � 0.01), and herpes (P �
0.04).

Similarly, the effects of DMPA use were influenced by the pres-
ence of CVIs. RANTES remained significantly increased by
DMPA use only in women positive for herpes, BV (P � 0.001), or
candidiasis (P � 0.04) and with an abnormal Nugent score of 4 to
6 (P � 0.05). Lower BD2 remained associated with DMPA use
only if positive for herpes, T. vaginalis infection (P � 0.001), or
chlamydia (P � 0.01). The immunosuppressive effect of DMPA
was exacerbated by additional lower levels of IL-1RA in women
with gonorrhea (P � 0.01), chlamydia (P � 0.05), or HSV-2 (P �
0.001), SLPI in women with gonorrhea (P � 0.05), or IL-1�, MIP-
3�, and IL-1RA/IL-1� ratio in those with T. vaginalis infection
(P � 0.001).

We next examined differences by CVI status within each HC-
use stratum (Fig. 2; see Table S4 in the supplemental material). In
the no-HC group, T. vaginalis infection was the only CVI to show
significant changes detectable by increased levels of multiple im-
mune mediators, including IL-1� (P � 0.001), BD2 (P � 0.01),
IL-8, IL-1RA (P � 0.02), and MIP-3� (P � 0.04). Of the other
CVIs lab confirmed within the no-HC group, only gonorrhea and
chlamydia showed an immunostimulatory effect limited to in-
creased IL-1� levels (P � 0.001) or IL-1RA (P � 0.001), respec-
tively.

Within the COC user group, increased levels were seen only for
RANTES by herpes, intermediary Nugent score, and BV and BD2
by T. vaginalis infection (P � 0.01). In contrast, chlamydia de-
creased IL-1� levels (P � 0.03), herpes decreased IL-8 (P � 0.05)
and VEGF (P � 0.02) levels, gonorrhea (P � 0.03) and candidiasis
(P � 0.04) decreased VEGF, and an intermediary Nugent score
was associated with the broadest immunosuppressive effect dem-
onstrated by decreased levels of IL-1RA, IL-6, IL-8, VEGF (P �
0.001), IL-1� (P � 0.01), MIP-3� (0.02), and SLPI (P � 0.05).

Within the DMPA user group, gonorrhea was associated with
decreased SLPI (P � 0.04) and IL-1RA (P � 0.02), chlamydia with
reduced levels of IL-8 (P � 0.05) and VEGF (P � 0.02) but in-
creased levels of RANTES (P � 0.01), T. vaginalis infection with
decreased levels of SLPI (P � 0.02), and herpes (0.04), candidiasis,
and BV (P � 0.01) with increased levels of BD2.

DISCUSSION

The HC-HIV study had previously found that women who used
DMPA, but not those who used COC, were at significantly in-
creased risk of HIV acquisition compared to women not using
hormonal contraception (1, 7), and we had shown that this risk
may be mediated by differential effects of DMPA and COC on
cervical innate immunity (22). More specifically, in the nestedT
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cohort of 199 HIV seroconverters and 633 controls, HIV serocon-
version was associated with preceding higher levels of RANTES
and BD2 and lower levels of SLPI (22). We now demonstrate that
cervicovaginal infections modified these three markers of HIV
seroconversion risk in a manner dependent on HC use. Of special
concern is our new finding that even though COC use had no
effect on RANTES in CVI-free women, RANTES was increased
among the COC users in association with herpes and abnormal
vaginal microbiota (Nugent score of �4), both highly prevalent in
women at HIV risk. Thus, dependent on the CVI and microbiota
status, COC use may convey risk of HIV. RANTES was increased
by DMPA in CVI-free women, but this effect was amplified by
some CVIs, such as chlamydia and herpes. SLPI, which is a major

antibacterial and antiviral effector in the cervicovaginal environ-
ment, previously shown to be reduced by BV and T. vaginalis
infection (49), was decreased by T. vaginalis infection and gonor-
rhea among the DMPA users and among the COC users— by
intermediary abnormal microbiobiota (Nugent score of 4 to 6).
The third marker of HIV seroconversion risk, decreased BD2, was
increased among no-HC and COC users by T. vaginalis infection
and among DMPA users by herpes, candidiasis, and BV. Thus, the
differential effects of COC and DMPA on the risk of HIV acquisi-
tion may be explained by immune factors potentiated by popula-
tion differences in the prevalence of abnormal microbiota and
bacterial, viral, or protozoan sexually transmitted infections.

In addition to RANTES, SLPI, and BD2, which were associated

FIG 2 Combined effects of cervicovaginal infections (CVIs) and hormonal contraception (HC) on markers of cervical immunity. Women were stratified by CVI
status and HC use within each CVI stratum, and levels of immune biomarkers were compared by multivariable analysis via generalized linear models and
Wilcoxon tests after adjustment for other individual CVIs. Bars represent the differences between the average concentrations calculated for each of the combined
CVI-plus-HC category listed on the left and the average concentration calculated for the physiologic CVI-free no-HC baseline (15 women who were infection
free, had a normal Nugent score, and who did not use any HC). Consequently, the CVI-free, no-HC baseline average was set to 0 in each bar plot. P values with
asterisks (*, P � 0.05; **, P � 0.01; and ***, P � 0.001) signify differences between no-HC and combined oral contraceptive (COC) or DMPA users within each
CVI stratum. P values with plus signs (�, P � 0.05; ��, P � 0.01; and ���, P � 0.001) signify differences between each CVI-positive group and the CVI-free
group matched by HC (e.g., no-HC, COC, and DMPA). The P values for the two comparisons and the number of women in each group are shown in Tables S1
and S2 in the supplemental material.
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with subsequent HIV seroconversion and altered by DMPA or
DMPA when combined with specific CVIs but also similarly by
COC use only when combined with certain CVIs, the profiles of
other proinflammatory mediators differed by HC use. Overall,
COC increased levels of the proinflammatory mediators IL-1�,
IL-6, and IL-8, while DMPA did not change or decreased their
levels when combined with CVIs (e.g., chlamydia). In CVI-free
women, COC but not DMPA use was associated with higher levels
of IL-1�, IL-6, and IL-8. In agreement with our findings, an ex-
perimental study showed upregulation of IL-6 in ectocervical and
vaginal epithelial cells when treated with COC but not DMPA
(50). Another in-vitro study showed that a DMPA dose of 10�7 M
induced downregulation of a broad spectrum of immune media-
tors in peripheral blood mononuclear cells (24). In the same
study, IL-6 was suppressed by DMPA but only at a very high dose
of 10�6 M, which may not be maintained at the cervical tissue
level.

The biological grounds for differences observed in the effects of
DMPA and COC can be attributed to differential regulation of
inflammatory pathways by different progestins like DMPA and
levonorgestrel (24), as well as to differences between progestins
alone and progestins combined with estrogens. In another exper-
imental study, natural estrogen, as well as natural progesterone
combined with estrogen, but not progesterone alone decreased
BD2 expression by vaginal epithelial cells in vitro (51). In contrast,
in our study, DMPA, which represents progestin action alone,
suppressed BD2 levels, while COC, which is an estrogen-progestin
combination, did not suppress BD2 unless combined with herpes
or candidiasis. These differences between the natural hormones
and DMPA and COC can be explained by the fact that synthetic
progestins, unlike the natural reproductive hormones, promiscu-
ously bind to multiple steroid receptors (52–54), leading to acti-
vation of different transcription factors and cofactors leading to
transactivation or repression of a myriad of immune response
genes (55–57).

We found that in comparison to CVI-free women, women
positive for BV and herpes experienced broader proinflammatory
effects with COC use, including higher levels of IL-6, IL-8, and/or
IL-1�, and in addition, higher levels of MIP-3� and VEGF and
lower values of the anti-inflammatory IL-1RA/IL-1� ratio. These
changes may lead to increased risk of HIV due to inflammatory
tissue damage and HIV host cell activation. Higher cervicovaginal
levels of IL-1�, IL-6, and IL-8 and lower levels of IL-1RA corre-
lated with cervicovaginal epithelial tissue damage and inflamma-
tory infiltration in a recent prospective randomized trial assessing
vaginal mucosal safety of cellulose sulfate, nonoxynol-9, and the
universal hydroxyethyl cellulose (HEC) placebo (58). Preexisting
high cervicovaginal levels of IL-1� and IL-8 predicted tenofovir
gel failure to prevent HIV in a case-control study of HIV serocon-
verters and HIV-negative controls (59). The recent CAPRISA 004
trial showed that the effectiveness of the tenofovir gel, the first
vaginal microbicide to show promise for HIV prevention, was
diminished by preceding innate immune activation measurable
not only at the cervical but also at the systemic level (60). Increased
IL-6 was among the systemic markers predicting HIV seroconver-
sion in the CAPRISA trials (60). Finally, IL-1�, IL-6, and IL-8 were
inversely correlated with systemic CD4 counts in cervicovaginal
specimens from women with acute HIV infection (61).

Some aspects of the innate immune barrier amplified by COC
and DMPA in uninfected women (e.g., higher IL-8 and IL-1RA by

COC use and higher RANTES by DMPA use) may also be protec-
tive against some forms of BV or BV persistence. In the HC-HIV
study, both DMPA and COC were associated with a reduced prev-
alence of BV (6, 48, 62). The reduction in BV with HC use was also
seen in the Mombasa sex worker study (6).

On the other hand, once established, the abnormal intermedi-
ary vaginal microbiota was associated with a broadly suppressed
cervical innate immunity among the COC users in our study
(lower levels of IL-1�, IL-6, IL-8, MIP-3�, VEGF, SLPI, and IL-
1RA). This immunosuppressed state in the presence of interme-
diary vaginal microbiota is especially concerning since this condi-
tion of the vaginal microenvironment is not routinely diagnosed
and treated, and it may facilitate the survival of other sexually
transmitted pathogens, especially in women using COC. In addi-
tion, other aspects of innate and acquired immunity not measured
in our study can be suppressed by HCs. In murine models of STIs,
progesterone suppressed Th17 cell responses to gonorrhea, shift-
ing the balance to immune tolerance (63), and estradiol down-
regulated Th17 responses to C. albicans infection (64). In our
study, COC use was associated with suppressed BD2 among the
women positive for candidiasis and BD2 is essential for antifungal
defense and for killing C. albicans in particular (65). Suppressed
immune responses to C. albicans infection may explain why COC
use was associated with more candidiasis in the HC-HIV study
(48).

In conclusion, using clinical specimens that were obtained
from women attending reproductive health clinics in Uganda and
Zimbabwe, we showed that cervicovaginal pathogens and altered
vaginal microbiota contribute to the differences in the effects of
HCs on the cervical mucosal immune environment in HIV-
negative women. The high prevalence of asymptomatic infections
especially among COC and DMPA users that remain likely undi-
agnosed and untreated raises even more concerns in light of their
combined effects on cervical immunity and biomarkers associated
with risk of HIV. A deeper understanding of the pathogen-HC
interactions may provide further insights for development of tar-
geted interventions based on HC use and CVI status to improve
reproductive health in women. Awareness of this fact can facilitate
the design of clinical trials and meta-analyses to better define the
role of different types of HCs on HIV risk. HCs can alter the risk of
HIV acquisition and transmission differently based upon the
background differences in concurrent CVIs. Epidemiological
studies assessing the effect of HCs on mucosal immunity may
generate different results in populations that differ by CVI preva-
lence or microbiota characteristics. In the future, these findings
should be accounted for when assessing the risk of HIV acquisi-
tion/transmission and designing multipurpose technologies to
better prevent pregnancy and HIV acquisition in women.

MATERIALS AND METHODS
Study design. For this nested study, we utilized samples and data from 18-
to 35-year-old HIV-uninfected participants in the HC-HIV study (n �
823) enrolled from family planning clinics in Uganda and Zimbabwe (7).
The nested study included 199 women (51 Ugandan and 148 Zimba-
bwean) who became HIV infected, sampled at the study visit just prior to
the one at which HIV seroconversion was documented (median of
3 months). These samples were matched with samples from 633 controls
(160 Ugandan and 473 Zimbabwean), who remained HIV uninfected
during a 6-month follow-up. The population characteristics of the cohort
studied here are presented in detail elsewhere (66). Briefly, contraceptive
group designation was based on the primary contraceptive method
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women used during the time between their previous study visit and the
selected visit. Women in the non-hormonal contraceptive (no-HC) group
used only condoms or no contraception. Women who chose to use hor-
monal contraceptives received from study clinicians either DMPA
(150 mg injected every 3 months) or COC (30 �g ethinyl estradiol [EE]
and 150 �g levonorgestrel). All women were asked to abstain from sexual
intercourse 48 h prior to cervical swab specimen collection. No specimens
were collected during menstrual bleeding, and friable cervix/visible blood
was rarely recorded during swab collection.

Cases and controls were matched by study site, age, a composite sex-
ually transmitted infection (STI) variable (see below), and time in study,
with up to 4 matched controls for each case. The composite STI variable
was set to 1 if a participant was diagnosed with C. trachomatis, N. gonor-
rhoeae (both confirmed by PCR), or had bacterial vaginosis (BV) at either
the visit at which HIV infection was detected or at the previous visit (the
last HIV-negative visit). The composite STI variable was set to 0 for
women who tested negative for all 3 of these conditions at both visits. The
composite STI variable was chosen to control for exposures rather than to
detect interactions among specific pathogens.

Ethics statement. The study was carried in accordance with the Code
of Ethics of the World Medical Association (Declaration of Helsinki). The
parent HC-HIV study was carried with subjects’ informed consent and
Institutional Review Board approval for human subject research at par-
ticipating institutions in the United States and Africa. The biomarker
sub study protocol received a nonhuman subject determination (use of
deidentified data) from the Office of International Research Ethics at
FHI 360 and the Institutional Review Board at Brigham and Women’s
Hospital.

Clinical and laboratory diagnosis of infection. A CVI-free status was
defined as having no laboratory-diagnosed infection. Laboratory diagno-
sis of CVIs included PCR (Roche Amplicor) for C. trachomatis and N. gon-
orrhoeae, antibody enzyme-linked immunosorbent assay (ELISA) for her-
pes simplex virus 2 (HSV-2), wet mount for T. vaginalis and Candida, and
Nugent scoring for BV. HIV-negative status was ascertained by PCR.

Clinical signs of CVIs were defined as positive (�) when any one of the
following findings was recorded by clinicians on a physical exam: inflam-
mation or ulcers of the vulva; yellow/green, white/creamy/grey, or mixed
vaginal discharge; positive whiff test; presence of clue cells; abnormal vag-
inal epithelium; abnormal cervical epithelium; or yellow/green cervical
mucus.

Information on symptoms of CVIs were obtained through a struc-
tured interview during which subjects were asked if they had abnormal
vaginal discharge, genital itching, lower abdominal pain, or pain during
sex and were given the options to answer with “yes,” “no,” or “don’t
know.” Symptoms were defined as positive (�) when abnormal vaginal
discharge, genital itching, lower abdominal pain, or pain during sex was
reported. Bleeding between periods was not considered a symptom of
CVI. For this analysis, only those who answered “no” to all of the above
were considered symptom free (those who answered “don’t know” were
excluded).

Biomarkers of cervical immunity. For biomarkers of cervical immu-
nity, we utilized cervical Dacron swabs, which were collected in Amplicor
lysis buffer (Roche Diagnostics) and processed as previously described
(67).

Eight biomarkers (IL-1�, IL-1RA, IL-6, IL-8, RANTES, MIP-3�,
VEGF, and sICAM-1) were measured simultaneously using the Meso
Scale Discovery (MSD) multiplex platform and Sector Imager 2400
(MSD, Gaithersburg, MD). This MSD detection platform has been vali-
dated for accuracy and precision of cytokine recovery using international
standards by comparisons with traditional ELISA (68) and has shown
high clinical content validity for all eight biomarkers in large clinical co-
horts (69–78). The MSD 8-plex was custom designed and optimized to
allow detection of each biomarker within the linearity concentration
range of the eluted cervical swab samples. SLPI and BD2 were measured
by ELISA (Quantikine human SLPI assay from R&D Systems, Minneap-

olis, MN, and human �-defensin 2 assay from Phoenix Pharmaceuticals,
Inc., Burlingame, CA).

Each sample was tested in duplicate, and the average value was nor-
malized to average milligram total protein concentration obtained from
duplicate measurement using the Pierce bicinchoninic acid (BCA) pro-
tein assay (Fisher Scientific, Pittsburgh, PA). The ELISA and BCA assays
were read using a Victor2 reader (PerkinElmer, Boston, MA). The per-
centages of coefficient of variation (CV) of duplicate values obtained by
this method were �10%. A quality control sample pool that showed val-
ues within the linearity range was split into aliquots, and one aliquot was
tested on each assay plate showing interplate variation of �25% for all
immunoassays and proteins. Spiking of the Amplicor lysis buffer and
diluent with known concentrations of the test proteins confirmed no assay
interferences at the chosen lowest sample dilutions (2-fold for the MSD
8-plex, 80-fold for SLPI, and 25-fold for BD2). All samples showed values
above the low limits of detection (LLD) for each assay as follows: IL-1�,
1.2 pg/ml; IL-1RA, 0.16 ng/ml; IL-6, 1.7 pg/ml; IL-8, 0.8 pg/ml; RANTES,
1.8 pg/ml; MIP-3�, 16.4 pg/ml; VEGF, 0.12 pg/ml; and sICAM-1, 3.6 pg/
ml. For SLPI, the LLD was 0.46 ng/ml, and for BD2 the LLD was
12.2 pg/ml.

Statistical analysis. The Box-Cox power transformation approach
was used to transform biomarker concentrations into normal distribu-
tions for statistical modeling analyses. Descriptive statistics, including
medians and ranges were used to summarize biomarker levels. The asso-
ciations between levels of mediators and CVIs, clinical signs and symp-
toms of CVIs, and HC use were evaluated by the Wilcoxon tests and
Kruskal-Wallis tests. Fisher’s exact test was used to evaluate the associa-
tion between CVIs, HC use, and women’s characteristics. Bivariate and
multivariable analyses controlling for other CVIs via generalized linear
models were used to examine the effects of individual CVIs and HC use on
levels of mediators. This study was based on a secondary data analysis to
explore the impact of CVIs on the relationship between HC use and cer-
vical safety/immunity biomarkers. Due to the post hoc nature of the anal-
ysis power calculation were not applicable (79). Statistical analyses were
performed using SAS version 9.3 (SAS Institute, Cary, NC).
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